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Abstract

Real time filtering of noisy turbulent signals through sparse observations on a regularly spaced mesh is a notoriously
difficult and important prototype filtering problem. Simpler off-line test criteria are proposed here as guidelines for filter
performance for these stiff multi-scale filtering problems in the context of linear stochastic partial differential equations
with turbulent solutions. Filtering turbulent solutions of the stochastically forced dissipative advection equation through
sparse observations is developed as a stringent test bed for filter performance with sparse regular observations. The stan-
dard ensemble transform Kalman filter (ETKF) has poor skill on the test bed and even suffers from filter divergence, sur-
prisingly, at observable times with resonant mean forcing and a decaying energy spectrum in the partially observed signal.
Systematic alternative filtering strategies are developed here including the Fourier Domain Kalman Filter (FDKF) and
various reduced filters called Strongly Damped Approximate Filter (SDAF), Variance Strongly Damped Approximate Fil-
ter (VSDAF), and Reduced Fourier Domain Kalman Filter (RFDKF) which operate only on the primary Fourier modes
associated with the sparse observation mesh while nevertheless, incorporating into the approximate filter various features
of the interaction with the remaining modes. It is shown below that these much cheaper alternative filters have significant
skill on the test bed of turbulent solutions which exceeds ETKF and in various regimes often exceeds FDKF, provided that
the approximate filters are guided by the off-line test criteria. The skill of the various approximate filters depends on the
energy spectrum of the turbulent signal and the observation time relative to the decorrelation time of the turbulence at a
given spatial scale in a precise fashion elucidated here.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

An important emerging scientific issue is the real time filtering through observations of noisy turbulent sig-
nals for complex dynamical systems with many degrees of freedom as well as the statistical accuracy of various
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filtering strategies in this context. These problems typically have many spatio-temporal scales, rough turbulent
energy spectra in the solutions near the mesh scale, and a very large dimensional state space yet real time pre-
dictions are needed [24,27]. There is an inherently difficult practical issue, ““‘the curse of ensemble size”, due to
the large computational overhead in generating individual ensemble members through the forward dynamical
operator [18]. These issues become especially subtle when there are sparse observations of the chaotic turbu-
lent signal. Various reduced order filtering strategies [28,13,31,2,3,7,10,11,29,21,16] which are based on the
classical Kalman filtering algorithm [1,8,22] have been developed with some success for filtering large scale
instabilities in a chaotic system.

Here, we focus on the issue of filtering turbulent solutions through sparse observations on a regularly
spaced mesh which is a subset of the discretization mesh (see Fig. 1). In certain situation, this is a notoriously
difficult test problem where for example, in the chaotic 40-dimensional L-96 model [23] with sparse regular
observations, the ensemble Kalman filter (in this paper, we implement ETKF [5] with large ensemble size)
exhibits filter divergence [29] with any variance inflation parameter when the dynamical system is fully turbu-
lent and the observations are infrequent. The context for the study here is the filtering through sparse regular
observations of turbulent solutions of a linear constant coefficient partial differential equation with stochastic
forcing [6,14,25]. We do this both to gain fundamental theoretical insight into filter performance in a non-triv-
ial idealized setting and to develop alternative filtering strategies to cope with the difficult issues mentioned in
the first paragraph for both linear [6] and nonlinear problems [17].

The main objectives here are the following:
I. ETKF filter performance: To document the filter performance of ETKF on a non-trivial suite of test
problems for turbulent signals with sparse regular observations. Below we find limited skill for ETKF

on these problems and even filter divergence both due to the failure of observability [1,8,9,22] and sur-
prisingly in regimes of resonant forcing where observability is satisfied.

Physical Space

sparse observations for P=3

Fourier Space

aliasing set A(1) = {1,-40,42} for P=3 and M=20

aliasing set £(11) = {11,-30,52} for P=3 and M=20

aliasing set £(17) = {17,-24,58} for P=3 and M=20

Fig. 1. The top figure describes an example of physical space with regularly spaced sparse observations for P = 3. The bottom figures
describe examples of three aliasing sets (used in Section 4), i.e., A(1),.A(11), and .A(17), corresponding to the above physical space P = 3
for M = 20.
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I1. Off-line test criteria: To develop simple off-line mathematical test criteria [25,6] as guidelines for filtering
the extremely stiff multiple space-time scale problems which arise in filtering turbulent signals through
sparse regular observations. Theorem 3 from [25] provides the theoretical basis for doing this.

I11. Alternative filters: To develop more stable alternative reduced Fourier domain filtering strategies which
practically filter only the primary “resolved” Fourier modes with dimension equal to the sparse obser-
vation set yet automatically incorporate crucial features of the remaining “‘unresolved” modes in the fil-
ter algorithm. Such algorithms simultaneously can be stable and always satisfy observability condition,
and statistically accurate with small ensemble size for estimating the evolution of the mean state only as
opposed to many ensemble filters that utilizes the ensemble to propagate the covariance in appropriate
regimes of turbulent spectrum for filtering the turbulent signals.

With the above discussion, one might anticipate a very rich source of new phenomena in developing criteria
and new algorithms for filtering turbulent signals with sparse regular observations. This is true and these are
the issues studied in the present paper; next we provide a brief summary of the basic strategy and results.
The context of filtering sparse regularly spaced observations involves the discretization of the stochastic
PDE on a fine mesh with only partial observations of the true signal on a coarse regular mesh which is a reg-
ular subset of the discretization mesh (see Fig. 1, Section 2, and [25] for precise definitions). We utilize the off-
line mathematical test criterion in Theorem 3 of [25] for sparse regular observations in a parallel fashion as in
[6] for the situation with plentiful observations; the important difference here is that the canonical off-line test
problem is a filtering system coupling various aliased Fourier modes through a single observation rather than
the much simpler scalar test problems developed in [6]; the dimension of this canonical problem is the ratio of
the number of discrete regular mesh points to the number of discrete regular sparse observations. We set up
this test problem in Section 2 and establish there that new issues arise in the test problems regarding violation
of the observability condition for linear filters [1,8]. In fact, this violation of observability suggests that the
exact perfect model cannot be utilized to filter the truth signal generated from this model. By perfect model,
we mean that the true signal and the filter model are exactly the same. This subtle phenomenon leads to the
development of alternative systematic approximate Fourier domain filtering strategies which are introduced
and developed in Section 3 in the context of the canonical Fourier test problem for sparse observations:
The Fourier Domain Kalman Filter (FDKF), the Strongly Damped Approximate Filters (SDAF, VSDAF),
and the Reduced Fourier Domain Kalman Filter (RFDKF). The straightforward FDKF algorithm is the
most complex filtering procedure while SDAF, VSDAF, and RFDKF are cheaper filters that operate on
the lower dimensional state space associated with the primary Fourier modes of the sparse observations:
RFDKEF is a filter akin to the one used for Fourier methods with non-smooth initial data [26,19] where only
the coarse mesh variables are filtered while the true dynamics is utilized on the remaining fine mesh variables.
The SDAF algorithm is also novel and introduced in Section 3; it is a “memoryless” filter on a subset of ““‘unre-
solved” modes coupled with a FDKF on a subset of “resolved” modes with a list of attractive features for
filtering turbulent signals developed in Section 3; the SDAF algorithm combines a systematic analytic “turbu-
lence closure” model with FDKF on a reduced phase space while VSDAF is an important variant. All these
filtering strategies are tested on the canonical Fourier test problem for sparse observations in Section 4 for a
wide range of observation times, mean forcings, correlation times, and turbulent spectra to establish theoret-
ical guidelines for filter performance for turbulent signals for the PDE cases, studied in Sections 5 and 6.
For the canonical Fourier test problem, the approximate filters satisfy observability criteria and often have
performance comparable to and even superseding the standard Kalman filter (FDKF) in various important
regimes. As in [6], turbulent solutions of the stochastically forced dissipative advection equation are utilized
throughout the paper both for numerical experiments presented in Sections 5 and 6 and theoretical illustration
and/or motivation in Sections 2-4. With the theoretical guidelines from Section 4, the FDKF, VSDAF,
SDAF, and RFDKF algorithms are tested on the discretized PDE’s with sparse regular observations and com-
pared to a spatial domain ensemble Kalman filter ETKF [5] in Sections 5 and 6. In particular, the standard
ETKEF algorithm has strong filter divergence with resonant mean forcing even when observability is satisfied
while the SDAF, VSDAF, and RFDKF approximations have significant filter skill in this very difficult test
bed depending on the nature of the turbulent signal and the observation time. Both Sections 5 and 6 end with
a comprehensive summary and discussion of filter performance for sparse regular observations for turbulent
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signals for the stochastically forced dissipative advection equation with selective and small uniform damping,
respectively. Section 7 of the paper provides a concluding summary with a perspective on future developments.

2. Filtering discretizations of stochastic PDE’s with sparse regular observations
2.1. The perfect model signals

The signals which will be filtered through regularly spaced sparse observation by various algorithms, the
perfect truth signals, are determined by solutions of the real valued scalar stochastically forced PDE:

614(6);, fH_ ’P(%)u()@ /) — v(%)u(% 1)+ F(x,1) + o(x) W (1),

u(x,0) = up(x).

()

Here, o(x)(¢) is a Gaussian statistically stationary spatially correlated scalar random field and ¥ (¢) is white
noise in time while F(x, ) is a known deterministic forcing and the initial data u, is a Gaussian random field
with non-zero mean and covariance. The problem in (1) is non-dimensionalized to a 2rn-periodic domain so
that continuous and discrete Fourier series can be utilized in analyzing (1) and the related discrete
approximations.

The operators P(Z)andy(2) are defined through unique symbols at a given wave number k by

p(ag) eikx _ ﬁ(ik)e““

X
0 N
y <a> enlcr — y(lk)el"".
We assume that p(ik) is wave-like so that
plik) = oy 3)

with w; the real valued dispersion relation while y(ik) represents both explicit and turbulent dissipative pro-
cesses so that y(ik) is non-negative with

p(ik) > 0 for all k£ # 0. 4)

In geophysical applications, it is natural to have a climatological distribution and as discussed below, (3), (4)
are needed in order to guarantee this.

The general solution of (1) is defined through Fourier series. The 2n-periodic solution of (1) is expanded in
Fourier series

o0

u(x,0) = Y ig(n)e™, =i, (5)

k=—00

where i (¢) for k£ > 0 solves the scalar complex coefficient stochastic ODE’s [12],
diy, = [p(ik) — y(ik))i(1)dt + F(6)dt + 6, AWy, ic(0) = dtgy. (6)

Here the W, are independent complex Wiener processes for each k and the independent real and imaginary
parts have the same variance 1/2; the coefficients #_; for k > 0 are defined through the complex conjugate for-
mula #_; = & and the constant £ = 0 Fourier mode is real-valued with a similar single equation with detailed
discussion omitted here. Under the natural simplifying assumption that the symbol p(ik) of the underlying dif-
ferential equation is purely imaginary, i.e., a wave-like system, while the symbol y(ik) for the damping is al-
ways real and positive, i.e., y(ik) > 0, the statistical equilibrium distribution for (6) is a Gaussian with
variance, E;, defining the climatological energy spectrum given by

O

= , 1<k < +o00. 7
2y, @)

E;
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Mathematically, one needs to require Y E; < oo to define the stochastic solution of (1) correctly with a similar
requirement on the Gaussian initial data in uy(x). The damping coefficient, y, = y(ik) roughly defines the cor-
relation time [6], y; ', while w; = —ip(ik) defines the oscillation frequency at wave number k. Clearly, 7, ' mea-
sures the memory in the signal being filtered. As discussed in [25], the noise in (6) and (7) represents the
turbulent fluctuations on the mesh scale for both unresolved and resolved features of the nonlinear dynamics
([24,27] and references there) with a given energy spectrum E; and decorrelation time 7y, ! at each wave num-
ber. In practical problems, quite often the nature of this spectrum is known roughly as well as the decorrela-
tion time, expressed, through the damping coefficient y, [24,27,25]. As in [6], here we consider a general family
of power law energy spectrum,

Ey = Eolk| (8)

where f is a fixed exponent. The case with f = 0 defines an extremely rough equipartition of energy spectrum
while f = 5/3 defines the familiar Kolmogorov spectrum which generates a fractal random field. Note that
strictly speaking, > E; < co only if § > 1; however, the case where f# < 1 with a much rougher spatial random
field can arise quite often in practice as occurring on all families of realistic resolved meshes where the smallest
available mesh is still much larger than the turbulent dissipation scale; under these circumstances and in many
standard discretization approaches, we truncate (1) to the smallest mesh size. In this paper, we only discuss
and present results for a single space dimension to avoid cumbersome notation, however, the theory below
also applies in several variables.

2.2. The discrete approximation

Standard finite difference approximations operate on a family of equispaced 2N + 1 mesh points,
x; = jh, 0 < j < 2N, with (2N + 1)k = 2n. If real-valued functions f;, are defined on mesh points then with
the complex inner product,

h 2N
j=0

where g denotes the conjugate of g. The discrete Fourier coefficients, f; are defined by f; = (f,e* ), for
|k| < N, with the well-known properties

N . -
=)0 fa=Tn (= il (10)
[k[<N |k[<N
For a standard finite difference approximation to (1) without any random noise with a time step Az, the solu-
tion is expressed in standard fashion [30] in terms of the amplification factor, F, for integers k with |k| < N.
With the finite Fourier expansion
U= Z e, (11)
[k[<N
the general discrete approximation of (1) is given at the observation times mAt¢ through its Fourier coefficients
i by the block diagonal operation,
i’z,m+1|m = Fh,kﬁz,mw + Fk,m + Ohk,m+1- (12)
In (12) the zero mean complex Gaussian noises, gy, 1, are uncorrelated in time and their second moment
averages satisfy

<0h7k,m+1ff;,kam+1> = OpwThis |k |k/| <N (13)

with 7, the variance at wave number k and J; the Kronecker delta function. The consistent notation F; =
Fip = ePi=100)A jg ytilized for the amplification factor of the exact solution operator in (1). In this impor-
tant special case, the complex Gaussian system noise g, = a; is defined through the exact solution of the sto-
chastic equation in (6) from time step mAt¢ to time step (m + 1)As; thus the real and imaginary part of o are
zero mean independent random variables with variance
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re = Ex(1 = |F?), where Fy = ek (14)

The external forces Fy,, are prescribed through a compatible discretization of (6) and are assumed to be given.
2.3. Filtering sparse regular observations

Here, we define the set of regularly spaced sparse observations where the noisy measurements of the truth
signal from (1) are taken and filtered through the discrete dynamics from 2.2. Suppose the observations of
the truth signal defined in (1) are taken at 2M + 1 grid points which are regularly spaced, ie., ¥, =
jh, j=0,1,...,2M with (2M + 1)k = 2n. When M < N where (2N + 1)k = 2m and & denotes the mesh spacing
for the finite difference approximation, we have sparse regular observations since there are fewer observations

than discrete mesh points. Here, for simplicity in exposition, we assume that M and N are related by
N:M+;’(2M—|— 1) for any fixed P=1,203,...

so that with P = 2P + 1 there are P(2M + 1) regular spaced mesh points and 2M + 1 regular spaced observa-
tion points. Thus, P defines the ratio of the total discrete mesh points available for the discretization to the
number of sparse regular observation locations in (12) (see Fig. 1 for a visual demonstration).

With the sequence of observation times mAt and the discrete forward operator from (11) and (12), defining
u 1w (%), we attempt to get the best estimate of the truth signal u(x, mAt), defined through (1) by utilizing the

discrete forward operator for " and the noisy sparse regular observations of u at X; = jh, i.e.,

u(jh,mAt) =, (jh) + 65, j=0,1,2,...,2M. (15)

In (15), the observational noises, 7, are assumed to be zero mean Gaussian random variables which are inde-
pendent for each location X; with variance 7°. Thus, the filtering algorithm evolves the Gaussian statistical
state estimate from time mAt¢ through the mean and covariance first by the dynamics in (11) and (12) to create
the prior Gaussian distribution, #”" i which then is constrained by the noisy observations in (15) to produce
the state estimate @, defining the filtering approximation; this is the quantity which is the main interest
for us here. When r; and F, are given by the exact solution operator for (1) as in (14), this is clearly filtering the
truth signal in the perfect model scenario. We will see below, that devising accurate filtering procedures for the
rough turbulent solutions studied here presents an interesting challenge even in the perfect model scenario.

Without the external forcing, F(x, ), the truth signal in (1) always decays exponentially in time to the cli-
matological equilibrium defined through (6) and (7) (see [12]) and in particular the mean state exponentially
decays to zero. The external forcing F;(¢) in (6) both has physical importance and prevents the mean state
from decaying to zero; this provides another stringent test for filter performance in time. Here, we utilize
low wave number time periodic forcing for (6) with

N A iwo (k)1 if k <M
{ g0 (16)

0, if k>M
for prescribed w, (k). By calculating the exact solution of (6), the time discrete forcing in the perfect filtering

model induced by F(¢) in (16) is given by

A iwomAt H oA — : A .
F, = {}'k‘Fie((uo—wk) (ew f—elmtiod t)v ifk<M (17)

Fk.m -
' 0, if k>M
with iw; = p(ik) and 7y, = y(ik).

2.4. The canonical Fourier filter for sparse regular observations

_ Given a discrete Fourier wave number, ¢, [f| < M, associated with the sparse observation mesh
jh, j=10,1,2,... M, the aliasing set .A(¢) on the fine discretization mesh is the set of P wave numbers given by

A(l) = {klk = £+ 2M + 1)q, |k| < M 4+ P(2M + 1)}, (18)
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where ¢ = 0,£+1,4+2,43,..., and from 2.3, P = 2P + 1. In Theorem 3 of [25], it is established under natural
hypotheses that the filtering problem defined by (11), (12), and (18) is equivalent to the following family of
complex P-dimensional Fourier domain filtering problems for the amplitudes at wave numbers in each aliasing

set, A(¢).

(A) ﬁZ,erl\m = Fhaka/}cz,m\m +Fk,m + O hk,m+1 for k € A(f),

(B) Z ilk((m + I)At) = Z Ez,mwtl\mwtl + 6-2m+1’ (19)

ke A(L) ke A(L)

where for each ¢, 0 < ¢ < M, the observational noise is a zero mean complex Gaussian random variable inde-
pendent for different £ > 0 with variance

FP=0M+1)7" (20)

with 7° the physical space observation noise variance. The important fact here is that the analysis of filtering
for the reduced problem in (19) provides mathematically rigorous guidelines for filtering the original problem
posed in 2.1-2.3 akin to the scalar test problems utilized in [6]; here, the sparse regular observations introduce
the new feature of coupling among Fourier modes in the aliasing set in the canonical model. Since the ori-
ginal filter problem has only real coefficients, the reduced problem in (19) only needs to be studied or calcu-
lated for 0 < ¢ < M. Given a wave number /, it is convenient to build the complex P-dimensional column
vector

< ~h
iy iy,
~h ~h
o Uer@M+1)g, U,
u(l) = = , (21)
~h ~h
Uy M+1)gp Uy,

where the various components in the aliasing set A(¢) are indexed by the increasing magnitude of
kj =10+ (2M +1)q;, j=1,2,...,P; the primary wave number associated with i} is the first component of
(21) and obviously has a special role. If we introduce the P-vector gr = (1,..., I)T, with the notation in

(21) we rewrite (19)B) as given by
G ((m+ DA = Gp il s + T (22)

The standard simplest tests for stable filter performance in the canonical model are those for observability and
controllability [1,8]. Since the noises ;41 in (19)(A) have non-zero variance, controllability is always satis-
fied but there are still subtle issues of practical controllability elucidated in [6]; as noted already in [9], the
observability condition can be very subtle for discretizations of PDE’s. Observability for the canonical model
in (19) involves the invertibility of the P x P matrix,

1 1 ... 1
For, Fuey, o Fug
O = . . . (23)
Fr. Fr ... Fii
with
det Op = H(Fh’ki — Fh,k,-)~ (24)
i<j

It is important to test observability in the perfect model scenario, where

Fay = PR A= (ik)A (25)



J. Harlim, A.J. MajdalJournal of Computational Physics 227 (2008) 5304-5341 5311

If there is a selective damping so that

the dissipation y(ik) strictly increases with k for £ > 0,
then observability is always satistied for canonical model(19) since det O, # 0. (26)

On the other hand, if there is uniform damping, as often occurs with Ekmann friction or radiative cooling in
geophysical models [24,27], so that

(k) = d (27)
then observability is readily violated for appropriate observation times A¢, where det O, = 0. With (24), (25)
and (27) we calculate that for uniform damping,

det Op _ e—(g’C)dAt H e,a(ik,-)Az _ eﬁ(ik,-)At’ (28)

ki €A(L)

where (£C) = P!((P — 2)!2!)"". Thus, from (28), observability fails in the perfect model with uniform damping
at the observation time A¢, provided that, for some ¢ with |[¢| < M and some ¢; with k; = £+ (2M + 1)g,
belonging to the aliasing set, A(¢), there is an integer Q so that

((ik,) — p(ik;))Ar = i(on, — o)At = Q2mi, (29)

where p(ik;) = iwy,. As we demonstrate next, the observability test often fails for wave-like systems with uni-
form damping. One important issue treated in this paper is the significance of the failure of the classical
observability condition and its role in actual filter performance for the turbulent filtering problems with sparse
regular observations described in 2.3.

The theoretical result in (26) provides one possible computational filtering strategy to avoid the failure of
observability for the truth model in the uniformly damped case, i.e.,

filter the uniformly damped turbulent signal generated from (27) with a modified model with
selective damping 7(ik) satisfying (26) and use F,; = e”WA 700" in the computational filter.  (30)
Next, we demonstrate all of these phenomena in a test bed of models utilized throughout the remainder of the
paper.

2.5. The stochastically forced dissipative advection equation

Here, we illustrate the issues in 2.4 for filtering solutions of the general damped, stochastically forced advec-
tion equation

Qu(x,t)  Ou(x,t) Ou(x,t) — .
o - e du(x,t) + u 3 + F(x,t) + a(x)W(2). (31)

In this example, p(ik) = iw, = —ick and the damping is given by
y(ik) = d + k. (32)

For a fixed u > 0 we have selective damping so that according to (26) observability is always satisfied. On the
other hand, for d > 0 and u = 0, we have uniform damping and the observability condition fails if (29) is sat-
isfied, that is,

0O2n

for any positive integer Q and fixed j with 1 < |j| < P. Note that for the uniformly damped advection
equation observability fails simultaneously for all wave numbers ¢ with |¢| < M and simultaneously for many
pairs of wave numbers in a given aliasing set A(¢). Thus, filtering turbulent solutions of (31) with small
uniform damping at observation times satisfying (33) is a severe computational test problem discussed later
in Section 6.
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Other stringent test problems are achieved by utilizing resonant mean forcing in the truth signal in (16) so
that

wo(k) = wy  for all k, |k| < M. (34)

This is a severe test for filter performance utilized in the remainder of the paper especially when the observ-
ability condition is violated. In this paper, we also utilize non-resonant forcing with w, (k) = w; 4+ 1/2 in (16).

2.6. Standard parameters

The standard values in the remainder of this paper are M = 20, P = 3 so that there are observations of the
turbulent signal from (31) at 41 sparse regular observation points with 123 discrete mesh points for the
approximate filter. In Section 5, we study the filter performance for a case where the true signals are solutions
of the advection—diffusion equation with small diffusion coefficient,

=102 and d=0. 35
u

In contrast, in Section 6 we analyze and study the filtering performance where the true signals are solutions of
the uniformly damped advection equation with small damping

d=10"7 and pu=0. (36)

In testing the strategy outlined in (30) for filtering the true signal from the uniformly damped model with (36),
we use u = 10~ while retaining d = 1072 so that according to (32), the filter model is selectively damped. The
filter performance is also analyzed for power law turbulent energy spectra in the truth model with £y = 1 and
the exponent f§ varying for f = 5/3,1/2,0, as successively more stringent tests.

3. Approximate filters in the Fourier domain

With the notation in (21) and (22), the canonical Fourier domain filtering problem for regularly spaced
sparse observations from (19) is written concisely for the complex P-vector @' as given by

(A) ljlf’n+l|m = Fhitjlnpn + Fm + Ohm+15 (37)
(B) Upi1 =8p- Zﬁz+l|m+l + 0
where
A) = (11,....)" R’
(A) & =( ) (38)

(B)  Tus1 = & - t((m + 1)Ar)

so that ,,,; is determined from the aliased components of the truth signal defined in Section 2.1. In (37)(A), F,
is the diagonal P x P complex matrix with entries determined by (19)(A).

The Fourier Domain Kalman Filter (FDKF) is simply the standard Kalman filter algorithm [1,8] applied to
all the disjoint aliasing sets A(¢) for all 0 < ¢ < M. In standard fashion, the P x P complex covariance matrix
R, 1s updated in two steps: first, via the dynamics in (37)(A)

Rm+1\m = FhRm|mFZ + th (39)

where R), is the diagonal matrix with entries 7 ;; then R, 11}, is updated to R, 11 via the single observation in
(37)(B) so that

Rm+1\m+l = Rm+l|m - A(Rerl\ma ’;O)Rer]\m (§P b2y g;)Rm+l\m (40)
with the scalar factor A(R,.1m,7°) given by
A(RMH\mv?’o) = (EP 'Rm+l\m§P+’A’O)7I' (41)

In (40), gp ® g} is the rank one P x P matrix given by (gp ® g5)w = gp(gp - W). The update of the mean,

i), 1y 1> 0 the filtering process [1,8] is given by
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52’1+1\m+1 = K’VH‘ID’”JFI + EzIJrl\m - Km+l§P ! aierrl\m? (42)
where the provisional update of the mean & L1} 18 determined by the dynamics in (37)(A),
EZ‘FI‘WI = Fhafn\m +F”’ (43)

The P-vector K, is the Kalman gain vector [8]
12m+1 - A(Rm+1|m7 ’A"O)Rm+1|m§P- (44)

The FDKF algorithm is already a reduced filter and much less expensive and more stable than implementing
the Kalman filter or the ensemble Kalman filter such as ETKF [5] directly on the spatial domain (see Sections
5 and 6). Nevertheless, there are regimes of turbulent spectra and dynamics in the basic truth signal from (2.1)
where this filter can be ill-conditioned and less accurate; thus, it is desirable to develop simpler approximations
to FDKF as both alternative computational filters and for theoretical purposes. This is the topic of the
remainder of this section.

3.1. The Strongly Damped Approximate Filters (SDAF, VSDAF)

The SDAF filter is motivated by the following situation which readily arises in practice with selective damp-
ing (see Sections 4 and 5). For a given P, assume that there are two separate groups in the dynamics (19)(A)
with

(A) Moderate damping :  |Fj,| = O(1), 1<i<P,
(B) Strong damping: |F|=0() <1, P,+1<i<P.

(45)

The assumption in (45)(B) means that there is a strong damping in a subset of the aliased modes; in this sit-
uation, the dynamic covariance update in (39) can be inaccurate because the cross-covariances between the
first P, components and the last strongly damped P — P, components involve successive multiplications by
large and small numbers to get order one quantities. The SDAF algorithm eliminates this potential numerical
difficulty. It approximates the covariance matrix, R, », by the block diagonal covariance matrix

Rm+1\m,Pu 0

Thkpy41

Rm+l|m = Th,kpo+2

Thkp

This is the covariance matrix that results from replacing the dynamics in (19)(A) on the strongly damped
modes, P, + 1 < i < P, by the “memoryless dynamics”

i :Fk,,m+0h,ki7 P0+1 <1<P (47)

uk,-,m+l |m

When the situation in (45) is satisfied, it is intuitively clear that the approximation in (47) is a reasonable one.
With this approximation in (46), the filter scaling factor A in (41) becomes

-1
P
A(Rm-%—l\mv ’A’O) = <§Po : Rin-%—l\m,PogPo + Z Fhk; + fﬁ) = A(Rm+l\m,Po7 ?Po) (48)

i=Po+1
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with 7p, the augmented noise

P
f‘po = Z Vhk; +f‘0. (49)
i=Po+1
With the approximation in (45), the Kalman gain splits into contributions from moderately damped and
memoryless (or strongly damped) modes and the gain vector is given by K, = (KI,KH)T where

KI = A(Rm+1\m,P07 rp, )an-%—l\nLPong

, X , (50)
Ky = ARpstimpo> 7p, )rikiy Po+1<i<P.

Furthermore, the P, x P, block of the covariance matrix R, iju+1p, is updated by utilizing the same formula
in (40) applied to the P, dimensional filtering problem. The important feature of the SDAF algorithm with the
memoryless dynamics in (47) is that the entries of the covariance, R, 1ju+1, corresponding to the memoryless
modes never need to be computed. In the SDAF algorithm, the means of the memoryless modes are updated
by (47) so

0 iim = Frmy Po+1<i<P. 50

JmA-1|m

This completes the construction of the SDAF algorithm since the mean state is updated through the general
formula in (42) by utilizing (50) for the Kalman gain vector.

There is an important variant of the SDAF algorithm which needs to be mentioned here. Namely, one can
use the memoryless approximation in (47) to update the covariance matrix in (46) but utilize the complete
dynamics in (43) to update the mean state and calculate i |, ; the mean state update +1jm11 18 then achieved
through the same formulas in (50) and (42). We call this filtering algorithm, the Variance Strong Damping
Approximate Filter (VSDAF), since the strong damping is applied only for calculating the covariance matrix.
Unlike SDAF, the VSDAF algorithm allows a weight for the dynamics of the memoryless modes in the filter.

Advantages of the Strong Damping Algorithms: First, the strong damping algorithms (both SDAF and
VSDAF) only require actual Kalman filtering on a reduced subspace of P, dimensions yet automatically yield
an update of the mean state of the system on all the variables including all of the P—P, memoryless variables.
Furthermore, while we motivated these algorithms under the hypotheses in (45), the strong damping algo-
rithms can be applied in any situation as a filtering approximation, even in circumstances where (45) is not
satisfied (see Sections 4-6). Another attractive feature of these algorithms is that the subtle features of viola-
tion of observability, discussed earlier in Sections 2.4 and 2.5 only need to be analyzed for the reduced P,
dimensional filter; in particular, if P, =1, the strong damping algorithms always satisfy observability on
the reduced subspace. Thus, the strong damping filters are an alternative computational strategy to the one
proposed earlier in (30) with artificial selective damping as a remedy for failure of observability. The filter per-
formance of both strategies is compared in subsequent sections.

Another important attractive feature of the SDAF becomes apparent when we recall the nature of the tur-
bulent truth signals described in Section 2.1 which we are attempting to filter. We claim that

the SDAF algorithm automatically provides a reasonable consistent estimate for the energy

in the memoryless modes for any turbulent spectrum in the truth signal. (52)

To support the claim in (52), we use the formula in (38)(B) for the mean signal from the truth model together
with (50) and (42) to calculate that the strong damping algorithm produces the following estimate for the mean
of the memoryless modes (assuming zero external forcing in (47)),

(A) 8 i = Ti Y t((m+ 1A, Po<i<P (53)
ke A(2)

with
(B) I'i= rhvklA(Rm+1|7n:P()’ ’A’Po)'

Note that in general, the weights satisfy > I'; < 1. Consider for illustration purposes, the difficult case of
an equipartition spectrum where all the r,,, are equal; then all the I'; are also identical and the SDAF
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approximation automatically distributes the compressed truth signal, >°,_ Aotk equally among the
memoryless modes, which is intuitively consistent with equipartition of energy. Similarly, for decaying
spectrum, the SDAF approximation automatically provides less weight from the compressed truth signal
in the memoryless modes with less turbulent energy in a weighted fashion roughly consistent with this
spectrum.

3.2. The reduced Fourier domain Kalman filter

The RFDKF approximation is based on the intuitive idea that for a sufficiently rapid decay in the turbulent
spectrum of the truth signal, the primary mode contains the most energy so only this mode should be actively
filtered. Thus, RFDKF always trusts the dynamics in (37) for all the aliased modes 2 < i < P yielding a Kal-
man gain vector with the form

I_("erl = (Km+1 ) 07 07 s 70)T (54)
while the primary mode, ﬁzl, is filtered by the one-dimensional algorithm,

~h _ ~h T
(A) 8 iim = Fier iy, i + Fievon + Oy 1,

L ] (55)
(B)  Oup1 — Z Ui ettt = Uiy mtjm1 + Gy
=2
This type of reduced filtering algorithm was introduced earlier for theoretical purposes in a different context in
[14]. Observability is always satisfied for RFDKF provide 0 < |F"|.

The computational advantage of RFDKF is apparent since only a one-dimensional Kalman filter is
needed and the main input of the modes which are not observed by the sparse observations is to increase
the resolution of the actual dynamics. In the rest of this paper, we refer to the one-dimensional primary
mode as the resolved mode since the single observation is available and the trivially updated aliased
modes as the unresolved modes since the observations are not available here. To simplify the jargon in
the special case of the strong damping approximations with P, =1 (as discussed in Section 3.1), we also
refer to the moderately damped mode as the resolved mode and the memoryless modes as the unresolved
modes.

3.3. Comparison of approximate filter algorithms

Compared with RFDKF which only trusts the dynamics for the unresolved (or aliased) modes, the
SDAF approximation with P, = 1 has an opposite design principle of “memoryless dynamics” but yields
a non-trivial estimate for the mean on the unresolved modes based on the observations. For the special
case with P, =1, the VSDAF uses the explicit Kalman gain vector in (53) to weight the unresolved
dynamics and the effect of sparse observations in the filter dynamics as a natural blending between SDAF
and RFDKF. Both the VSDAF with P, =1 and RFDKF algorithms require detailed Kalman filtering on
the primary mode alone and satisfy observability. Furthermore, the VSDAF algorithm with P, =1
involves only modest additional processing through the explicit formulas in (53) beyond the RFDKF algo-
rithm yet produces a reasonable state estimate for the unresolved Fourier modes. The filter performance
of SDAF, VSDAF, and RFDKF as well as FDKF is studied in Section 4 for the canonical filter test
problem; the results in Section 4 provide guidelines for filtering performance of these algorithms on the
important PDE test problems in Sections 5 and 6.

4. Filter performance on the canonical test model

We follow the strategy utilized in [6,25] where the filtering behavior of discrete approximations were studied
in various stiff parameter regimes for a canonical complex scalar model as practical guidelines for filter
performance for PDE’s with plentiful observations. Here, we study the filter performance of the various



5316 J. Harlim, A.J. MajdalJournal of Computational Physics 227 (2008) 5304-5341

approximations developed in Section 3 on the canonical test model for sparse regularly spaced observations in
(19).

4.1. Selective damped signal

In this section, we discuss the filter performance on a canonical P-dimensional problem where the truth sig-
nal is a solution of a selective damped process. In particular, we generate the true signal by solving the advec-
tion—diffusion equation (31) in Fourier space with standard parameters d = 0 and u = 1072 as in (35) and for
our canonical problem, we check the filtering results on aliasing sets .A(1) = {1,—40,42} and A(11) =
{11, -30, 52} (see Fig. 1) where P = 3 and M = 20. Specifically, the true initial state is a solution of the advec-
tion—diffusion after 100 steps and the filter initial condition is randomly drawn from a Gaussian random var-
iable with the true state as the mean and equilibrium kinetic energy as the variance. The data assimilation is
then run for 10,000 steps with observation time step At.

For our numerical test, we choose three different observation times Az = 10~°, 0.1, and 0.9. In Fig. 2, we
see that these observation times include different dynamical phases compared to the decorrelation time
Teorr = y,jl. The short observation time Az = 1073 yields highly correlated dynamics in each wave number,
while with the long observation time Az = 0.9, the dynamics in wave numbers higher than 10 are totally uncor-
related with their initial conditions. Additional stringent tests on this problem involve three different control
signals:

4.1.(A) Decaying mean 4 = 0 in (16).
4.1.(B) Non-zero resonant periodic forcing on observed modes: 4 = 0.1, w, = w; for all |k| < M.
4.1.(C) Non-zero non-resonant periodic forcing on observed modes: 4 = 0.1, w, = w; + 1/2 for all |k| < M.

The observations are simulated following (37)(B) and (38). We check the robustness of the filter toward
variations of observation noise variance 7° from 0.05 to 3. Since the maximum equilibrium kinetic energy spec-
trum is 1, the values 7° = 0.05,0.5,... represent noise variance of sizes 5%, 50%, ... of the climatological
energy spectrum E, defined in (7), respectively. In each regime, we compare four strategies: FDKF, SDAF,

decorrelation time vs observation times
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Fig. 2. Decorrelation time of a selective damped signal from the advection—diffusion equation (y, = uk® for u = 0.01) compared with the
observation times, both plotted as functions of model wave number k.
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VSDAF, and RFDKF. Finally, we note that for both strong damping strategies (SDAF and VSDAF), we
consider only P, = 1 since we want the filter to satisfy the observability condition, as in RFDKF.

We perform simulations in the aliasing sets, A(1) and A(11), and utilize the average RMS error (spatio-
temporally averaged RMS difference between the mean posterior state ﬁfnlm and the true state i(mAt)) as
the performance indicator. These are reported in Fig. 3 for A(11). We find the following general trends: when
the energy spectrum is rough with equipartition spectrum E; = 1 and the observation time is short Az = 10~°,
the best strategy is to use the full FDKF. However, the VSDAF is reasonably skillful; the errors are compa-
rable to that of the full FDKF. As the observation time is increased A¢ > 0.1, the strong damping SDAF is
comparable to the first two methods. When the turbulent spectrum is £, = k~'/* we still see similar trends
except that the advantages of FDKF over VSDAF/SDAF and even over the reduced filter RFDKF becomes
less important. As the turbulent spectrum becomes smoother E; = k'3, we can hardly distinguish the perfor-
mance between all the four strategies we compared; hence, one may choose either RFDKF or SDAF with
P, =1 for computational efficiency. In Fig. 3, as a representative of the overall trends, we show results for
aliasing set .A(11) and observation times A = 0.001,0.1,0.9 for various energy spectra. In each panel, we plot
the average RMS errors of each filtering strategy as functions of observation errors /7. Since the general fil-
ter performances mentioned earlier are quite robust toward variation of 7/° and the various different mean
states 4.1.(A), (B), and (C) in the truth signal, in Fig. 3 we only show the results for non-resonant forcing
in 4.1.C).

The poor performance of RFDKF for the short observation time, small observational noise, and an equi-
partition spectrum is due to the failure of practical controllability; this phenomenon already occurred in [6]
with time discretized noise. Recall that controllability implies non-zero system noise variance; as we mentioned
in Section 2.4, each mode is controllable for this diagonal Fourier model. However, some modes may have
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Fig. 3. Selective damped signal: RMS errors as functions of observation error v/7 for non-resonant periodic forcing and aliasing set
A(11). The first column for E;, = 1, the second column for E; = k72, and the third column for E, = k~*>. The first row describes
perfgrmance for observation time Az = 0.001, the second row for A¢ = 0.1, and the third row for Az = 0.9. In each panel, FDKF is denoted
by ° ’, SDAF in square, VSDAF in circle, RFDKF in diamond, and the dashes denote the observation error size.
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very small O(107°) non-zero system noise variance, so practical controllability is violated and this violation
induces an unskillful or non-convergent filtered solution whenever |F ;| ~ 1 [1]. With a very short observa-
tion time A¢ = 0.001, the system noise variances for the unresolved modes for E; = 1 are much larger than that
of the primary mode

Fuky > Thgy =Tng, Po+1=2<j<P. (56)

Thus, the reduced filter consists of dynamics with |Fj4, | ~ 1 and the smallest system noise variance and clearly
it is a less controllable one-dimensional filter compared to the full P-dimensional filter. The very high skill of
VSDAF, even for Ar = 107>, occurs because it employs the full dynamics in propagating fzﬁi‘m that contains
non-zero Kalman gain components in the unresolved modes to the prior state " 1jn- Now, when the obser-
vation time At is larger, SDAF becomes comparable to both FDKF and VSDAF since |F,| =~ 0 for the unre-
solved modes P, +1 < j < P and hence the strong damping approximation in the mean state becomes

appropriate. On the other hand, whenever E;, = k3,
Phk Stk = The, Po+1=2<j<P, (57)

which suggest that the reduced filters and the full filter have compatible controllability condition. Hence, it is
obvious that these filters perform comparably.

4.2. Uniformly damped signal

The basic experimental set-up in this section is similar to that in Section 4.1 except that the true signal is a
Fourier domain solution of the weakly damped advection equation (31) with standard parameters d = 0.01
and £ =0 as in (36). We now look at the P-dimensional filtering problem for aliasing sets A(1l) =
{1,-40,42} and A(17) = {17, 24,58} (see Fig. 1 for illustration). For this model, we check the filtering per-
formance for three different observation times: a non-observable time At = 2r/(2M + 1) = 0.1532 that satis-
fies (33) for Q = 1 and j = 1, an observable time A¢ = 0.5, and a giant observable time step Az = 50 with very
infrequent observation which is a half of the damping time scale Teorr = 1/, = 1/d = 100.

From the numerical experiments, we now see the effects of the different mean signals 4.1.(A), (B), and (C)
toward the filtering performance. In Fig. 4, we present the filter performance for aliasing set .A(17) and non-
observable time At = 2nt/(2M + 1). Without resonant periodic forcing, the filtering skill is RMS-wise very sim-
ilar to the selective damped case. The full FDKF is the best filter for equipartition spectrum E; = 1. For
smoother energy spectra with E, = k=2 k=3, all four strategies are comparable. When a resonant periodic
forcing is added to the primary mode, the observability violation in the full filter severely degrades the filtering
performance; RMS-wise, we see that the errors in FDKF are on average about 80 for equipartition spectrum,
60 for k~'/2, and 40 for k. We also note (without presenting the results) that on aliasing set .A(1), the filter
performances are qualitatively very similar to the decaying mean case or non-resonant periodic forcing case.
The presence of a low frequency resonant periodic forcing in the aliasing set for small wave numbers £ in the
primary mode does not degrade the filtering skill on this still rather long time interval of assimilation.

The presence of resonant periodic forcing also degrades VSDAF in the equipartition spectrum for small
observation noise size (5% of the equilibrium spectrum) and non-observable time Ar = 0.1532 (see Fig. 4).
To understand this fact, let us consider the following scaling analysis. When E; = 1, according to formula (14),

rag ~ 1077, P+ 1</ <P.
Hence, the amplitude of the unresolved components of the Kalman gain are
Ku~ 10"

since each component in (48) and (50) is on the order of 1072 Now suppose that the signal in the resolved
mode is on the order of 10! while the unresolved modes are on the order of 10%; this situation reflects the case
with a resonant periodic forcing signal. Thus, the observation is on the order of v ~ 10' since it is generated via
(37) and (38), and therefore, the updated mean state is shifted by

Kyv ~ 10°, (58)
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Fig. 4. Uniformly damped signal: RMS errors as functions of observation error v/7° for non-observable time Az = 0.1532 and aliasing set
A(17). The first column for E;, = 1, the second column for E; = k72, and the third column for E; = k. The first row describes
performance for decaying mean signal 4.1.(A), the seci)nd row for resonant periodic forcing 4.1.(B), and the third row for non-resonant
periodic forcing. In each panel, FDKF is denoted by ° °, SDAF in square, VSDAF in circle, RFDKF in diamond, and the dashes denote
the observation error size.

which is relatively large for the unresolved modes. Now, since the memory in the VSDAF is given by a uni-
formly damped filter, the dynamical operator has an amplitude |F; | ~ 1 in the unresolved directions. Hence
this large drift is carried into each data assimilation cycle and it is the main contributor for the less accurate
filter performance in VSDAF in this regime.

On the other hand, if all of the modes are of the same order 10°, then the observations also have the
same order v ~ 10°. In this situation, the additional Kalman weights in the unresolved components should
improve the filtering skill because the Kyv is in appropriate order for all modes and it is intuitively clear
that an updated state should be weighted more toward the observations when the observations are relatively
accurate 7° = 0.05. In Fig. 4, in fact, we see a slight advantage of VSDAF over SDAF with £, =1 and 7°
small for a decaying mean signal and a non-resonant periodic forcing. Back to the resonant periodic forcing
case; when 7° is increased, the unresolved components of the Kalman gain K1 become small and meaning-
less. In contrast to (58), the updated mean state is shifted by a much smaller Knv so that the memory in
VSDAF does not degrade the filtering skill. In SDAF, the Kalman weight Ky, is never used in (42) for
the mean update on the unresolved modes because SDAF is a memoryless filter there. This argument also
holds for justifying the skillful solution in the RFDKF since the Kalman gain for the unresolved compo-
nents are zero.

Now, let us focus our interest on the regime with smooth spectrum E, = k—>/> where the presence of reso-
nant periodic forcing degrades the filter significantly even when observability is satisfied in the RFDKF and
SDAF. A similar trend is also observed for the other observable times At = 0.5, 50. In this regime, the system
noise variance for the resolved mode is on the order of 107> while |F,; |~ 1 for 1 <i< P, so practical
controllability is already an issue even for a one-dimensional filtering problem. Furthermore, this failure is



5320 J. Harlim, A.J. MajdalJournal of Computational Physics 227 (2008) 5304-5341

magmﬁed when the observation noise variance is large since the filter tends to trust the dynamics, i.e.,
Kk o ~ 0, which then implies marginal stability factor |F,(Z — Koogp)| ~ 1 and this definitely degrades the ﬁl-
ter convergence [1,6]. In Section 6, we will go back into this issue for small 7° and show that it is in fact possible
to obtain a much more skillful filtered solution when practical controllability is reinstalled; this was done sys-
tematically in [6] for discretizations with model error through an information criterion for the setting with
plentiful observations.

4.2.1. Modified Model Using the Selective Damped filter

Now, let us consider the strategy described in (30): that is, we make a model error and modify the model
slightly by adding a selective damping through a diffusive coefficient u = 102 for the filter model. As it was
mentioned before, this strategy is motivated by the fact that the selective damped model is always observa-
ble (see (26)). In Fig. 5, we show numerical results of filtering with FDKF and RFDKF for the modified
filter and compare it to SDAF and VSDAF for the unmodified filter with u =0 which also satisfy
observability.

From our numerical simulations, we find that when the main signal is either a decaying mean or a non-res-
onant periodic forcing, the modified full filter is comparable to the unmodified FDKF (compare Fig. 4 for
unmodified filter and Fig. 5 for modified filter in the same aliasing set .A(17) and non-observable time
At = 0.1532) for equipartition energy spectrum. For smoother spectrum E; = k'3, there is a slight advantage
of using the modified filter compared to strong damping strategy, however, it is not significant.
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Fig. 5. Filtering uniformly damped signal with modified filters: RMS errors as functions of observation error v/7° for non-observable time
At = 0.1532 and aliasing set .A(17). The first column for E; = 1, the second column for E; = k~'/?, and the third column for £, = k3,
The first row describes performance for decaying mean signal 4.1.(A), the second row for resonant periodic forcing 4.1.(B), and the third
row for non-resonant periodic forcing. In each panel, modified FDKF is denoted by s , SDAF in square, VSDAF in circle, modified
RFDKEF in diamond, and the dashes denote the observation error size.
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In the presence of resonant periodic forcing, this approach completely fails because the signal to noise ratio
is large and the additional damping introduces significant model errors. Additionally, when the resonant peri-
odic forcing accumulates in time, the mean model error from the difference between the two mean periodic
forcing solution 7, ,(y,) and Fy,(7) (see (17)), where J; = 7, + uk*, becomes important.

4.3. Summary on the canonical test model

By simply using the RMS error as the performance measure, we conclude that in general we always have
robust skillful results in filtering the selective damped signal with the full filter FDKF; however, the cheaper
reduced filter VSDAF performs comparably including the difficult case of equipartition spectrum where
RFDKF performs poorly. On the smoother spectrum, the cheaper reduced filters have comparable skill to
FDKF.

When the uniformly damped signal is considered, an additional complexity is introduced via the violation
of observability for FKDF. In general, we find that when the signal to noise ratio is small (e.g., with decaying
mean or non-resonant periodic forcing), FDKF is the best method for equipartition spectrum although SDAF
has significant skill; all the cheaper reduced filters give comparable performance to FDKF for smoother spec-
trum since the signal to noise ratio for smoother spectrum is slightly larger than the signal to noise ratio for
equipartition spectrum, especially in the high wave numbers. In this regime, it is also advantageous to use a
modified model as suggested through (30) with additional damping term x = 1072 although the improvement
is very slightly. When the signal to noise ratio is large (e.g., with resonant periodic forcing), the full filter
FDKEF fails completely since the observability condition is practically violated. The filter with the additional
damping term with g = 1072 also fails even when the observability condition is reinstalled since the model
errors are too large when the signal amplitude is large. In this situation, SDAF and RFDKF produce the best
filter performance since they both satisfy the observability condition and do not have model errors on the pri-
mary mode.

In the following two sections, we will use these results as theoretical guidelines for filtering the spatio-tem-
poral PDE systems with sparse observations. Note that in that context, we will consider an additional measure
beyond the average RMS error for assessing the filter performance, the spatial pattern correlation of the fil-
tered solution and the actual turbulent signal.

5. Filter performance on the stochastically driven advection—diffusion equation

In this section, we discuss the selective damped filtering problem considered in Section 4.1 on the PDE
level; in particular, we combine all of the P-dimensional filtering problems for aliasing sets
A(), £=0,1,...,M, and study the filter performance in the spatial domain. We adopt the same standard
parameters for an advection—diffusion equation and the same experimental design set-up as in Section 4.1
except that now we only run the assimilation for 7 = 1000 steps. We will only show results for the smallest
7° = 0.05 since this corresponds to observation noise variance ° = 2.05 in the spatial domain while the signals
are on the order of 10°~10'. For larger r°, we find that the filter is mostly weighted to the dynamics so that it is
quite often that the average RMS errors are small (smaller than the observation noise size) but the filtered
solution may not be as accurate. We will only show results for equipartition spectrum E; = 1 and smooth
spectrum E; = k3 since the results with intermediate spectrum E; = k~'/> behave in between the two former
spectra we consider.

To measure the filtering performance on spatially extended systems for sparse observations, we cannot rely
solely on the RMS error and compare it to the observation noise size, especially when the signal to noise ratio
is large. In the rest of this paper, we will consider one additional measure for filter performance: the spatial
correlation between the mean corrected state ﬂf’n‘m(jh) and the true signal u(jh, mAt), for j=0,1,... 2N.
The spatial correlation between discrete functions is their discrete inner product divided by the product of
their discrete mean square norms; this is a measure of how closely the spatial graphs of the two functions
resemble each other with a correlation at the maximum value one measuring perfect coincidence of the graphs
with a positive scale factor [24,25]. Thus, an accurate filtered solution is one with small RMS error and high
temporal average spatial correlation.
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5.1. Ensemble transform Kalman filter

The extended Kalman filter is not practically useful when the model state space is on the order of 10°~107,
which is often the case in an operational global weather model, since its covariance update involves multipli-
cation of a matrix of size 10° x 10° (or 107 x 107) in each data assimilation cycle. In order to assess the
performance of our cheap filtering strategies, we consider an operationally plausible scheme, Ensemble Trans-
form Kalman Filter (ETKF), which is introduced in [5] and advocated in [21] with spatial local analysis for
computational efficiency and to avoid spurious correlation between two distance away grid points, as a bench-
mark. In our Fourier domain filters, we basically ignore the correlation between the Fourier coefficients in dif-
ferent aliasing sets and there are no obvious relations between a particular grid location in the physical space
with particular set of Fourier coefficients. For a fair comparison, therefore, we only implement ETKF globally
as in [5] with ensemble update as in [32,15,16].

In our experiments, we test ETKF with various ensemble sizes K = 100, 150,300, and 500 if necessary
whereas the model state space is 2N + 1 = 123. For small ensemble size and a nonlinear model, it is often found
that the uncertainty is underestimated [20,4,33]. A simple remedy is to use a multiplicative covariance inflation.
For ETKF, we implement the multiplicative covariance inflation as prescribed in [15]. In our experiments, we
compare and vary the covariance inflation r from 0% to 40% even when the model is linear and the ensemble
sizes are larger than the model state space. In Table 1, we show average RMS errors of extensive runs in a
regime (E; = k>3, At = 0.1, and decaying mean) where ETKF is expected to excel. We find that the RMS
errors are slightly below the observation noise v/7° = 1.43 for experiments with ensemble sizes 100 and 150,
however the highest average spatial correlation is only 0.55 and it is achieved by the experiment with the lowest
RMS error (r = 40% and K = 100). Furthermore, as shown in Fig. 10, there can be filter divergence for ETKF
with resonant periodic forcing even for the k~>/* spectrum and for selectively damped advection—diffusion equa-
tion. In the following section, we will see that the Fourier domain strategies never diverge in this regime and
always produce more skillful results compared to ETKF. For rough spectrum E; = 1, the situation is worse
and ETKF has very little skill even for a decaying mean state and for an ensemble size of K = 500. The lowest
average RMS errors is roughly 11.28 and the highest average spatial correlation is only 0.38.

5.2. Numerical results

From our numerical experiments, we find that the overall results are parallel to the guideline from the ODE
in Section 4.1. For short observation time Az = 10~*, FDKF dominates in both spectra we considered but the
cheaper VSDAF is a very skillful filter with reasonably comparable performance to the FDKF. That is, their
RMS errors are comparable while in terms of temporal average spatial correlation, FDKF is on average about
0.15 better than VSDAF (see Fig. 6 for decaying mean signal and equipartition spectrum E; = 1), and both of
them are far superior to RFDKF and SDAF. With such a short observation time, the signal is on the order of
10° with or without the resonant periodic forcing so the effect of mean forcing is negligible here. Here, for the
first time we see an important facet of filter skill with sparse observations which occurs repeatedly in Section 5
and 6; namely in Fig. 6 the RMS errors for FDKF and VSDAF are above the observation error, yet the aver-
age correlation values 0.78 and 0.64 indicate substantial skill for these filters. This is in contrast to the situation
with plentiful observations [6] where RMS errors below the observational noise are the signature of filter skill.

Table 1
RMS errors of filtering the stochastically driven advection—diffusion equation with ETKF in regime with smooth spectrum E; = k3,
decaying mean, and observable time Az = 0.1 for various ensemble size K and covariance inflation r

RMS error r=0% r=10% r=20% r=30% r=40%
K =100 1.41 1.34 1.31 1.26 1.22

K =150 1.37 1.30 1.29 1.26 1.24

K =300 1.35 1.46 1.54 1.59 -

The maximum temporal average spatial correlation is 0.55 and is achieved by the experiment with lowest RMS errors with K = 100 and
r = 40%.
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Fig. 6. Advection—diffusion equation for At = 107, E, = 1, and decaying mean. The first column shows RMS errors as functions of time
for unfiltered solution (dotted line), the filtered solutions (solid), and observation noise size (dashes). The second column shows the
snapshots of the filtered solution (corresponds to the filtering strategy stated in the subtitle of each panel in the first column for the same
row) as functions of model spatial domain at time 1 (solid), the true state (dotted), and the sparse observations (circle).

In Figs. 7 and 8, we show results for At = 0.1 and decaying mean signal for experiments with £, = 1 and
E, = k™% spectra, respectively, as benchmarks. Note that for the equipartition spectrum, the unfiltered solu-
tion has an average RMS error 15.55 and average spatial correlation almost zero, while in the smooth spec-
trum E; = k>, the unfiltered solution has RMS error 2.46 and average spatial correlation 0.1. Here, the
results, again, reflect those of the ODE case in Section 4.1, that is: FDKF, SDAF, and VSDAF are all superior
for E, = 1 with comparable performance and an average spatial correlation about 0.7 while RFDKF has
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Fig. 7. Advection—diffusion equation for Az = 0.1, E, = 1, and decaying mean. The first column shows RMS errors as functions of time
for unfiltered solution (dotted), the filtered solutions (solid), and observation noise size (dashes). The second column shows the snapshots
of the filtered solution (corresponds to the filtering strategy stated in the subtitle of each panel in the first column for the same row) as
functions of model spatial domain at time 100 (solid), the true state (dotted), and the sparse observations (circle).

much lower average correlation, only 0.39, and larger RMS errors. All our schemes are comparable for
smoother spectrum E, = k—>/> with average spatial correlation 0.86 as shown in Fig. 8. The results with the
non-resonant periodic forcing signal are very similar to the decaying mean case since in both cases the signal

to noise ratios are

relatively small and comparable.

Now, we discuss the case where the signal to noise ratio is large that reflects the resonant periodic forcing.
Notice that for the rough spectrum E; = 1, the filtered solution for the decaying mean signal has average
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Fig. 8. Advection—diffusion equation for Ar = 0.1, £, = k>, and decaying mean. The first column shows RMS errors as functions of
time for unfiltered solution (dotted), the filtered solutions (solid), and observation noise size (dashes). The second column shows the
snapshots of the filtered solution (corresponds to the filtering strategy stated in the subtitle of each panel in the first column for the same
row) as functions of model spatial domain at time 100 (solid), the true state (dotted), and the sparse observations (circle).

amplitude of order 10" while in the smoother spectrum E; = k>3, it is on average on the order of 10° (again,
see Figs. 7 and 8). Since the resonant periodic forcing for this observation time is on the order of 10!, it will not
affect the amplitude of the solutions in the rough spectrum as much as in the smoother spectrum. In Fig. 9, we
show results for £, = 1 with resonant periodic forcing signal. As one can see, the signal amplitude does not
increase significantly and the highest average spatial correlation increases from 0.70 to 0.79 compared to
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Fig. 9. Advection—diffusion equation for Az = 0.1, E;, = 1, and resonant periodic forcing. The first column shows RMS errors as functions
of time for unfiltered solution (dotted), the filtered solutions (solid), and observation noise size (dashes). The second column shows the
snapshots of the filtered solution (corresponds to the filtering strategy stated in the subtitle of each panel in the first column for the same
row) as functions of model spatial domain at time 100 (solid), the true state (dotted), and the sparse observations (circle).

the decaying mean case (see Fig. 7). This increase of correlation skill is not so surprising considering that the
unfiltered solution average spatial correlation also increases from 0 to 0.3 when a resonant periodic forcing is
added but the skill of the RFDKEF still is significantly lower. For smoother spectra, the additional resonant
periodic forcing increases the signal to noise ratio by one order of magnitude and it makes the four schemes
we compare almost indistinguishable. What is intriguing is that when the signal to noise ratio is this large, the
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Fig. 10. Advection-diffusion equation for At = 0.1, E, = k=, and resonant periodic forcing. The first column shows the results with
SDAF while the second column with ETKF with K = 150, » = 40%. The first row shows the RMS errors as functions of time for no filter
in solid line, the unfiltered solutions (dotted), and observation noise size (dashes). The last three rows show the snapshots of the filtered
solution (thick solid) as functions of model spatial domain at time 10, 50, and 100 (or after 7' = 100, 500, and 1000 cycles), respectively,
and compare it to the unfiltered solution (dashes), the true state (dotted), and the sparse observations (circle).

unfiltered solutions have RMS error 2.4 and have a very high average correlation 0.93. In fact, the correlation
skill converges to one as time grows. Hence, the Kalman filter seems to be redundant if one is interested only in
the equilibrium state. However, for practical real time prediction problems the accurate transient filtering of
the location and amplitude of the large spike has obvious practical importance. Based on this point of view,
in Fig. 10, we plot snapshots at transient times (after 100 and 500 assimilation cycles) as well as after 1000
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assimilation cycles for SDAF. The numerical results suggest a tremendously high filtering skill with SDAF
even after 1000 assimilation cycles (first column of Fig. 10) whereas ETKF diverges with K = 150, = 40%
(second column of Fig. 10) and the unfiltered solutions (green curves) are nowhere near the true signals.

When At is increased to 0.9 so there are infrequent observations, the system noise variances for equiparti-
tion spectrum become large and hence the signal to noise ratio becomes much smaller so that one expects a
substantial filter degradation for the decaying mean case and the non-resonant periodic forcing case. In fact,
we found that in this regime the spatial correlation decreases to 0.56. For a smoother spectrum, the system
noise variances are much smaller for high wave numbers k so the filtering skills for At = 0.1 and At =0.9
are almost identical since the signal to noise ratio is almost identical even when At is larger than 0.1. For res-
onant periodic forcing, as At is increased, the signal becomes larger since F; ~ At.

5.3. The sampling effect

In all of the numerical experiments above, we test the Fourier domain filtering strategies by assuming that
they all have perfect realization, in other words, we use formula (43) directly and we assume that there are no
sampling effects which may not be true in more complicated nonlinear problems. In this section, we assess the
filter performance with finite number of realizations (technically, the mean prior forecast state is computed by
taking an ensemble average of ", . propagated with (37)) and we compare it to the unbiased solution com-
puted directly via (43).

In Fig. 11, we show numerical results for 1 and 10 realizations and compare it to the ideal situation with
perfect realization for a regime with £; = 1, decaying mean, and Az = 0.1. This regime is considered to be a
difficult test since the signal to noise ratio is rather small and the uniform spectrum will ensure a rather high
fluctuation in the unresolved directions. From Fig. 11, we see that the simulation with 10 realizations is almost
indistinguishable compared to the simulation with perfect realization. The sampling effect is notable when the
numerical simulation is employed with one realization, however, the error difference is relatively small and
acceptable considering that we only use a single realization. Thus, the sampling effect is negligible in filtering
sparse observations with small ensemble size provided the ensemble has about 10 members. This result is
robust for all of the alternative filters we test in this paper in all their regimes.

5.4. Summary on the advection—diffusion equation as a test bed

The overall results in this section are directly predicted by simply looking at the corresponding canonical
P-dimensional filtering problem as shown in Section 4.1. In particular, the filtering skills are not affected by
the different mean forcing for the signals in 4.1.(A), (B), and (C). The filtering skill of the various filtering
strategies depends on the observation time A¢, compared to the correlation time at each wave number in
Fig. 2 as well as the energy spectrum. For the short observation time Az = 0.001 where all Fourier modes
in the truth signal are substantially correlated, FDKF has significant skill and VSDAF has nearly comparable
skill. For moderate observation times A¢ > .1 so that some of the high wave number modes in the truth signal
are completely decorrelated, for the rough spectrum, E; = 1, FDKF, VSDAF, and SDAF all have compara-
ble significant skill while RFDKF has significantly less skill; for Az > 1 and the smoother spectrum
E; = k3, all the filters FDKF, VSDAF, SDAF, and RFDKF have significant comparable skill. Thus, if
one is interested in computational efficiency, these results suggest the use of the alternative filters VSDAF,
SDAF, and RFDKF in various regimes of observation time and spectrum. As indicated in Fig. 11, all of these
results are robust for filtering the mean signal with only 10 ensemble members. Furthermore, the filter skill of
these alternative methods in the appropriate regime exceeds that of ETKF implemented in physical space; this
is true for ETKF with the optimum variance inflation parameter from Table 1 to give the best filter correla-
tion skill for ETKF with a large ensemble size. Furthermore, as shown in Fig. 10, surprisingly, for resonant
periodic mean forcing and the relatively smooth &3 spectrum, ETKF with large ensemble size suffers from
practical filter divergence while all the alternative filters never exhibit divergence even with a small number of
realizations.

We also find that the RMS errors are rather large for £, = 1 compared to those with the smoother spectrum
E; = k= for the filtering strategies we tested including ETKF. This is simply because the model with £, = 1
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Fig. 11. Advection—diffusion equation for Az = 0.1, E; = 1, and decaying mean. The first row shows the RMS errors as functions of time
and a snapshot at time 100 for simulation with one realization, the second row for simulation with 10 realizations, and the third row for
simulation with perfect realization. The legend in each panel is similar to that in Fig. 9.

has relatively large system noise variances in the unresolved components and hence the signal to noise ratio is
relatively small even for the case with resonant periodic forcing case. The difficulties with small signal to noise
ratio are obvious since the filtered solutions are dominated by the noise independent of how the filtered solu-
tions are weighted. Similar justification holds when the filtered solutions degrade for large observation time
At = 0.9. Furthermore, the Fourier domain filtering strategies are more attractive computationally because
the sampling effect is negligible for small ensemble size and they compute the exact covariance directly with
the Kalman filter formula as opposed to ETKF which depends heavily on the ensemble size for covariance
estimation.
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6. Filter performance on the stochastically driven advection equation with weak damping

Parallel to Section 5, we now discuss the filter performance for sparse observations of a turbulent signal
generated by the weakly damped advection equation in (31) and (36). One additional feature in this filtering
problem is that for an appropriate Af as in (29), the filtering problem with the perfect model is non-observable.
Also with small uniform damping, unlike the situation in Section 5 displayed in Fig. 2, all observation times At
here are below the correlation time at all spatial wave numbers. These features combine to make this problem
an extremely difficult test bed especially with equipartition spectrum. As in Section 5, here, we only run the
filter for 1000 assimilation cycles with 7#° = 0.05 and show results for £, = 1 and E; = k3. As in Section
S, we utilize the criteria in Section 4.2 for the canonical test problem to provide guidelines for this extremely
stiff problem. We begin the discussion by showing the performance of ETKF as a benchmark in regimes where
observability condition is fully satisfied. Subsequently, we discuss the filtering performances with perfect real-
ization for observable times and for a non-observable time. In this section, we omit the discussion of finite
ensemble effect since our numerical experiments suggest similar conclusion as in Section 5.3. We then conclude
this section by a short summary.

6.1. ETKF performance for an observable time

The filtering problem in this section is designed to be the hardest test bed when the filter is simultaneously
non-observable, has rough equipartition kinetic energy spectrum, and is dominated by a resonant periodic
forcing signal. Here, we will show that even when these three conditions are not met, ETKF fails to produce
a reasonably skillful solution. In our extensive runs with an observable time A¢ = 0.5, decaying mean, and a
smooth spectrum E; = k—°/, the highest temporal average of the spatial correlation is only 0.34. In Table 2,
the best average RMS errors from various ensemble sizes and covariance inflation are worse than the obser-
vation error v/7° = /(2M + 1)7° = 1.43.

When E;, = 1, the results are even worse; the lowest average RMS error is about 12.65 and the highest aver-
age spatial correlation is 0.22. Again, we emphasize that these results are not in the severe regime yet since the
observability is not violated and at the same time non-periodic forcing is not considered. In the following two
sections, we will show that much better filtered solutions are obtainable with the Fourier domain filtering
strategies. In the presence of a resonant periodic forcing we will also see divergence in the full FDKF but this
divergence is avoidable when the reduced filter or strong damping approximations are considered or practical
controllability is reinstalled in the appropriate context.

6.2. Fourier domain filter performance for observable times

When Atr = 0.5, the filtered solutions with E; = 1 are very similar to the solutions of filtering the selective
damped signals from Section 5 when the observation time At is below the correlation time of all wave num-
bers. In this case, the FDKF and VSDAF are the best filters for any spectrum with average spatial correlation
of at least 0.98 and average RMS error of at most 1.5 (slightly above the observation error 1.43 but still far
below the unfiltered solutions average RMS error 15.3), see Fig. 12. The three types of signals 4.1.(A), (B), and
(C) do not affect the superiority of FDKF and VSDAF over the other strategies. This is a significant improve-
ment over ETKF as discussed in 6.1. Note that when the smoother spectrum E;, = k= is considered, the same
conclusion holds for the decaying mean signal with the fixed observation noise.

Table 2
RMS errors of filtering stochastically driven weakly damped advection equation with ETKF in regime with smooth spectrum £, = k
decaying mean, and observable time Az = (.5 for various ensemble size K and covariance inflation r

-5/3
5

RMS error r=0% r=10% r=20% r=30% r=40%
K =100 1.90 2.09 2.17 2.23 2.33
K =150 2.02 2.01 2.08 2.16 2.31

K =300 2.19 2.47 2.58 2.69 -
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Fig. 12. Weakly damped advection equation for Az = 0.5, E; = 1, and decaying mean. The first column shows RMS errors as functions of
time for unfiltered solution (dotted), the filtered solutions (solid), and observation noise size (dashes). The second column shows the
snapshots of the filtered solution (corresponds to the filtering strategy stated in the subtitle of each panel in the first column for the same
row) as functions of model spatial domain (solid), the true state (dotted), and the sparse observations (circle), all at time 500.

However, for E; = k>3, results vary for non-resonant and resonant periodic forcing. In the former case,
the best results are found by strategies with additional selective damping proposed in (30) from Section 2.4 and
discussed earlier at the ODE level in Section 4.2. Here, the average spatial correlation is 0.87 for RFDKF with
1 = 0.01 while the unmodified filters (with ¢ = 0) have average spatial correlation of at most 0.75 (see Fig. 13).
In the left panels, notice also that the modified filters (last two rows) have RMS errors slightly lower than
those of the unmodified filters (first three rows). The right panels in Fig. 13 also show the improved capability
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Fig. 13. Weakly damped advection equation for Ar = 0.5, E; = k>, and non-resonant periodic forcing. The first column shows RMS
errors as functions of time for unfiltered solution (dotted), the filtered solutions (solid), and observation noise size (dashes). The second
column shows the snapshots of the filtered solution (corresponds to the filtering strategy stated in the subtitle of each panel in the first
column for the same row) as functions of model spatial domain (solid), the true state (dotted), and the sparse observations (circle), all at
time 500.

of the modified methods in capturing the negative spike in the truth signal. In this case, the model errors (con-
tributed by the additional damping term and the difference between F,, in (17) for p =0 and p = 0.01) are
still small enough to produce skillful filtered solution. In the presence of resonant periodic forcing, all of the
unmodified filters including RFDKF which fully satisfy the observability condition have an average spatial
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Fig. 14. RFDKEF (first row), RFDKF with increased noise (second row), and the modified RFDKF (third row) on the weakly damped
advection equation for Ar = 0.5, E;, = k=3, and resonant periodic forcing. The first column shows RMS errors as functions of time for
unfiltered solution (dotted), the filtered solutions (solid), and observation noise size (dashes). The second column shows the snapshots of
the filtered solution (corresponds to the filtering strategy stated in the subtitle of each panel in the first column for the same row) as
functions of model spatial domain (solid), the true state (dotted), and the sparse observations (circle), all at time 500.

correlation of 0.99, however, their RMS errors are much larger than the unfiltered solutions. These unsynchro-
nized performance measures are caused by the lack of controllability as discussed in Section 4.2 for the test
model. In Fig. 14, we show the RMS errors as functions of time and snapshots of filtered solutions after
1000 assimilation cycles in regime with Ar = 0.5,E;, = k=, and resonant periodic forcing for RFDKF.
The first row is for the unmodified filter with u = 0, where r,, ~ 10~ for aliasing sets A(¢) with £ > 5 when
computed with (14); the RFDKF filter is unmodified as well in the second row, however, we now increase the
system noise variance of mode k = 5,..., M (that is, the first component of aliasing sets .A(¢) with £ > 5) by
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0.01. Here, we see a significant improvement of the filter with larger system noise variances. This issue has
already been pointed out in our earlier work [6] where in there we utilize information criteria for choosing
system noise variances. The modified filter with ¢ = 0.01 (see third row of Fig. 14) introduces large model
errors in the presence of resonant periodic forcing and this failure is understood and discussed at the ODE
level in Section 4.2. In this large signal to noise regime for filtering, the modified models substantially damp
the large localized spike in the solution as could be expected by a diffusive modified model.

When the observation time is large At = 50, the best strategies for each regime are similar to those sug-
gested for Ar = 0.5, the only difference is that the average spatial correlations for such a long time are signif-
icantly smaller. This filter degradation is justified in similar fashion as in the case for At = 0.9 for an
advection—diffusion equation, that is, the signal to noise ratio becomes smaller as Af is increased.

6.3. Fourier domain filter performance for a non-observable time

In this section, we focus on the regime where observability is violated by setting the observation time to
be At =2m/(2M + 1) = 0.1532. In a regime where the energy spectrum is relatively smooth E, = k=3, the
observability condition is not needed to produce filtered solutions for FDKF with a decaying mean as
shown in Fig. 15 and the results qualitatively resemble those in Section 6.2 for all the other approximate
filters; these results mirror Section 4.2 for the test model. For non-resonant periodic mean forcing, at this
non-observable time, Fig. 16 shows a degradation in filter performance for FDKF with the lowest corre-
lation skill, only 0.67, and the highest RMS errors; however, there is no evidence for filter divergence
for this spectrum for FDKF at this non-observable time. In Fig. 16, we see that the modified filter with
1 =0.01 gives the best solution in the presence of non-resonant periodic forcing with average spatial cor-
relation 0.91 while the unmodified filters are only able to produce solutions with correlation at around 0.77
with SDAF and RFDKF. RMS-wise, the errors of the unmodified filters are on average 1.59 and slightly
larger than the modified filters 0.99. This slight advantage of the modified filter has already been noticed
earlier in the ODE level in Section 4.2. In the presence of resonant periodic forcing, although it is not
reported here in detail, we see the similar filtering failure as in Section 6.2 due to a lack of practical con-
trollability of the filter. Note that in Figs. 15 and 16 we do not show VSDAF because it is not better than
SDAF.

Now let us turn into the toughest regime for the test bed with rough spectrum E; = 1, that is, simultaneous
occurrence of identical noise strength in the energy spectrum of the turbulent signal and violation of observ-
ability. Secondly, we consider both the decaying mean and non-resonant periodic forcing for which the signal
to noise ratio is small. In Fig. 17, we show results from simulations for decaying mean signal with FDKF and
RFDKEF, both for modified and unmodified models, and SDAF. Again, we do not show VSDAF because it is
not better than SDAF. We see that the full filter FDKF with and without modification is the better filter
although the average correlation is rather low 0.53.

The last regime we consider is the rough spectrum E; = 1 with resonant periodic forcing so that the signal
to noise ratio is large. At this unobservable time for resonant periodic forcing with a rough spectrum, we
finally see strong filter divergence for FDKF and VSDAF as reported in Fig. 18 with unacceptably large ghost
spikes in the filtered solution; the filter divergence in VSDAF was explained in detail in Section 4.2 through
scaling analysis. Notice that the filter divergence that occurs in FDKF, VSDAF, and ETKF is avoidable with
all the other alternative strategies. In Fig. 18, we see that the better solutions are produced by the reduced
filters, especially SDAF with average spatial correlation 0.94 and RMS error 10.96 whereas the unfiltered solu-
tions have average spatial correlation of 0.89 and RMS error 14.14. In this regime, we do not show results with
modified filters since the presence of large signal to noise ratio introduces significant model errors due to the
augmented diffusion as noted earlier.

6.4. Summary on the weakly damped advection equation as a test bed
In general, the filtering performance of all the Fourier diagonal filtering strategies reflects the guidelines

given in Section 4.2 and these strategies supersede ETKF significantly. In the present setting with small uni-
form damping, the observation time Az exceeds the correlation time at all wave numbers in the true signal.
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Fig. 15. Weakly damped advection equation for Ar = 2rn/(2M + 1) = 0.1532, E; = k3, and decaying mean. The first column shows
RMS errors as functions of time for unfiltered solution (dotted), the filtered solutions (solid), and observation noise size (dashes). The
second column shows the snapshots of the filtered solution (corresponds to the filtering strategy stated in the subtitle of each panel in the
first column for the same row) as functions of model spatial domain (solid), the true state (dotted), and the sparse observations (circle), all
at time 153.2.

Thus, for the observable case, the best filtering strategies in each regime are similar to those for the advection—
diffusion equation as discussed in Section 5; FDKF and VSDAF are the best choices for an equipartition spec-
trum (Fig. 12) while the other filters SDAF, RFDKF have comparable skill for a decaying spectrum (Fig. 13).
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Fig. 16. Weakly damped advection equation for Ar = 2n/(2M + 1) = 0.1532, E; = k>, and non-resonant periodic forcing. The first
column shows RMS errors as functions of time for unfiltered solution (dotted), the filtered solutions (solid), and observation noise size
(dashes). The second column shows the snapshots of the filtered solution (corresponds to the filtering strategy stated in the subtitle of each
panel in the first column for the same row) as functions of model spatial domain (solid), the true state (dotted), and the sparse observations
(circle), all at time 153.2.

From the numerical results, we conclude that there are three new features in this filtering problem. The
first feature is that when the signal to noise ratio is small, regardless to whether the filter model satisfies
the observability condition or not, the modified filter with additional damping as suggested by (30) has supe-
rior filter skill; especially when the mean signal is driven by a non-resonant periodic forcing. In contrast, when
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Fig. 17. Weakly damped advection equation for At = 2n/(2M + 1) = 0.1532, E;, = 1, and decaying mean. The first column shows RMS
errors as functions of time for unfiltered solution (dotted), the filtered solutions (solid), and observation noise size (dashes). The second
column shows the snapshots of the filtered solution (corresponds to the filtering strategy stated in the subtitle of each panel in the first
column for the same row) as functions of model spatial domain (solid), the true state (dotted), and the sparse observations (circle), all at
time 153.2.

the signal to noise ratio is large, the modified filter is a bad choice since its additional damping introduces sig-
nificant model errors. The second feature occurs in a specific regime where the energy spectrum is smooth and
the signal to noise ratio is large for both observable and non-observable times. In this exceptional regime, the
filter is not practically controllable so that the signals are not synchronized. However, we can improve the
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Fig. 18. Weakly damped advection equation for Ar =2n/(2M + 1) = 0.1532, E; = 1, and resonant periodic forcing. The first column
shows RMS errors as functions of time for unfiltered solution (dotted), the filtered solutions (solid), and observation noise size (dashes).
The second column shows the snapshots of the filtered solution (corresponds to the filtering strategy stated in the subtitle of each panel in
the first column for the same row) as functions of model spatial domain (solid), the true state (dotted), and the sparse observations (circle),
all at time 153.2.

filtering skill significantly by increasing the system noise variance as discussed earlier in Section 4 and in [6].
The third feature occurs when observability is not satisfied and the energy spectrum is rough, E; = 1, then
SDAF and RFDKF are the methods of choice. Finally for the unobservable time, FDKF showed no evidence
of filter divergence with a decaying mean state, strong filter divergence with a resonant periodic mean forcing,
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and deteriorated filter skill below both SDAF and RFDKF without divergence for non-resonant periodic
mean forcing.

7. Concluding discussion

In the above sections, we considered the filtering of noisy turbulent signals generated by a linear stochastic
PDE which is observed through sparse regularly spaced observations. Consistent with the objectives in I, II,
III, from Section 1, we have checked the filter performance of ETKF in Sections 5 and 6, developed theoretical
guidelines for filter performance on these stiff multi-scale problems utilizing a suite of simpler canonical test
models in Section 4 following the strategy in [25,6], and developed more stable and computationally efficient
alternative filters in the Fourier domain in Secion 3, FDKF, SDAF, VSDAF, and RFDKF. As computational
algorithms SDAF, VSDAF, and RFDKF operate only on the primary Fourier modes for the sparse observa-
tions, 41 modes rather than 123 modes in Sections 5 and 6. A test bed of challenging problems for filtering
noisy turbulent signals for the stochastically forced dissipative advection equation with decaying mean state
as well as resonant and non-resonant periodic mean forcing have been developed in Sections 2, 5, and 6; in this
test bed, there are regimes of turbulent solutions with the rougher equipartition spectrum, E; = 1, as well as
the smoother &/* spectrum and turbulent signals to be filtered through sparse regular observations with low
and moderate signal to noise ratio (decaying mean and non-resonant forcing) as well as high signal to noise
ratio (resonant forcing). Such a test bed should be useful in future studies for filtering turbulent signals.
Section 5 involves the test case of the stochastically forced advection—diffusion equation which has selective
damping while Section 6 involves the more difficult test bed of the advection equation with small uniform
damping. Performance of the various filtering strategies was assessed both through RMS errors and the aver-
age spatial pattern correlation [24,27] with the truth signal; this latter measure of filter skill is especially impor-
tant for filtering sparse observations since the RMS error at all mesh points can often exceed the observation
noise error but the filter nevertheless has high skill reflected by a high pattern correlation; examples of this
behavior occur throughout Sections 5 and 6.

There are detailed summaries at the end of Sections 4-6 for filter performance skill on the suite of test prob-
lems as well as detailed discussion and comparison of the approximate filter strategies at the end of Section 3.
Here, we simply note some of the salient points. First, the filtering performance on the PDE’s in Sections 5 and
6 strongly reflects the guidelines from the filtering study on the simpler canonical ODE test problem in Section
4 in suitable stiff regimes. Secondly, the physical domain ETKF has poor filter skill on the entire test bed in
both Sections 5 and 6 with large RMS error (Tables 1 and 2), low correlation skill, and surprisingly, strong
filter divergence with a decaying spectrum and selective damping for the turbulent solutions of the advection—
diffusion equation in Section 5 with resonant mean periodic forcing. All of the Fourier domain filters studied
here have significant skill beyond ETKF in appropriate regimes. The skill of these approximate filters depends
on the observation time compared to the decorrelation time of the turbulent signal on the unresolved modes
(see Fig. 2), the energy spectrum, and also in Section 6 whether the observation time satisfies the classical
observability criterion (Sections 2.4 and 2.5). For Section 5 and observable times in Section 6, if the observa-
tion time is below the correlation time of all unresolved modes, FDKF and the cheaper VSDAF have very
high filtering skill for any spectrum; as the observation time increases SDAF also has comparable skill for
all spectra but RFDKF has poor skill for the equipartition spectrum and comparable skill for the decaying
k'3 spectrum. The effect on filter performance at an unobservable time for FDKF is interesting: as reported
in Section 6, there is high filter skill for the decaying mean state, strong filter divergence for resonant forcing,
and deteriorated filter skill compared to SDAF and RFDKF for non-resonant periodic forcing. The approx-
imate filters SDAF and RFDKF were designed to be always observable in Section 3; on the other hand,
VSDAF also suffers from weaker filter divergence with resonant mean forcing in Section 6 and a theoretical
explanation is given in Section 4.2.

The alternative regularization proposed in (30) by adding artificial viscosity to the uniformly damped
advection equation to generate a modified model for filtering was also tested in Section 6. For turbulent sig-
nals with low or moderate signal to noise ratio, such as the decaying mean state or non-resonant forcing, these
modified filters had the highest skill; however, for a large signal to noise ratio with resonant mean forcing
the performance of SDAF was superior to the modified filters due to their large model error; the modified
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methods introduce too much viscosity in the attempt to filter a localized large amplitude signal. On the other
hand, no attempt was made in Section 6 to optimize the artificial viscosity to minimize model error and this is
a topic worthwhile to pursue in the future.

Another practical source of filtering failure (which occurs even with RFDKF) is due to a lack of control-
lability when the spectrum decays smoothly. However, in Sections 4 and 6, we show that a significant filter
improvement is achieved when controllability is improved with larger system noise variance; this strategy
mimics that of [6]. The approximate filters also deal with the “curse of ensemble size” in this idealized setting;
as shown in Section 5, only 10 ensemble members are needed to achieve the idealized filter performance.

Finally, with the encouraging results developed here and in [17], in future work we plan to test the Fourier
domain, SDAF, VSDAF, and RFDKF algorithms developed here, in the context of the nonlinear chaotic L-
96 model in the severe environment of sparse regular observations where ETKF often suffers from filter diver-
gence [29]. Other future directions are to implement the Fourier domain filtering strategies in a different basis
such as the spherical harmonics in a global weather model and to develop filtering strategies for randomly
located sparse observations since typically the measurements, e.g., from buoys, satellite, or weather balloons,
are not taken at the model grid points.
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